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Abstract: Since ancient times, plants have been used as a source of medicine. Today, increasingly 

commercially significant medications have their roots in plants. Medicinal plants have proven to treat 

various diseases with low or no side effects. This study analyzed the suitability of the drug design of 

the plant compounds from the Dimocarpus Longan (longan) plant for cancer treatment. Three-

dimensional (3-D) of thirty selected bioactive compounds from the Longan plant were retrieved from 

the PubChem database. Retrieved plant compounds are screened using Lipinski’s Rule of Five, which 

provides a standardized requirement or criteria that a ligand should pass to be suitable for drug design. 

It establishes criteria for drug-like qualities and focuses on medication bioavailability. The Naïve Bayes 

Machine Learning algorithm was applied to the dataset to classify the plant compounds into two groups 

after screening using Lipinski’s Rule of Five. After classifying the plant compounds into two groups 

with optimal accuracy, the most influencing plant compounds were identified using principal 

component Analysis (PCA) techniques. Using Cross-Validation with k-fold=10 shows the accuracy 

produced by the Naïve Bayes Classifier, which reaches 93.33%. This study suggests that α-terpineol 

(PubChem ID: 442501) may be the safest and most effective cancer treatment. This in silico analysis of 

α-” ’terpineol’s anticancer properties will aid in creating a new and effective drug for cancer therapy. 

Keywords: Dimocarpus Longan; Lipinski’s Rule of Five; Naïve Bayes machine learning algorithm; 

principal component analysis. 
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1. Introduction 

Cancer is the world’s second-largest cause of death, with an estimated 10 million deaths 

in 2020 [1]. One in 5 men and one in 6 women worldwide develop cancer during their lifetime, 

and one in 8 men and one in 11 women die from the disease [2]. Worldwide, the overall number 

of people living within 5 years of being diagnosed with cancer, called the 5-year prevalence, is 

estimated at 43.8 million [3]. Around one-third of cancer deaths are due to high body mass 

index, poor consumption of fruits and vegetables, lack of physical activity, and use of tobacco 

and alcohol. Tobacco use is the most significant risk factor for cancer and is responsible for 

about 22% of deaths from cancer [1]. The increasing cancer burden is due to several factors, 

including population growth and aging, as well as the changing prevalence of certain causes of 
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cancer linked to social and economic development. The economic effect of cancer is significant 

and increasing. This is especially true in fast-growing economies, where poverty-related 

cancers change, and lifestyle-related cancer infections are more common in developed 

countries. Total annual cancer economic costs were estimated at around US$ 1.16 trillion in 

2010 [4, 5]. 

Global findings indicate that almost half of the new cases and more than half of the 

world’s cancer deaths in 2018 are expected to occur in Asia for men and women combined, 

partially because the country has nearly 60 percent of the global population. Europe accounts 

for 23.4% of global cancer cases and 20.3% of cancer deaths, though it has just 9.0% of the 

world’s population [6]. The Americas account for 13.3 percent of the world‘s population, 21.0 

percent of the incidence, and 14.4 percent of mortality worldwide [7]. Unlike other regions of 

the world, the proportion of cancer deaths in Asia and Africa (57.3% and 7.3%, respectively) 

is higher than the proportion of accidents (48.4% and 5.8%, respectively), as these regions have 

a higher incidence of some forms of cancer associated with lower prognosis and higher 

mortality rates [8]. 

Cancer refers to a large number of diseases characterized by the production of abnormal 

cells that uncontrollably divide and are capable of invasion and destruction of normal body 

tissues [9]. Such changes are the product of the interaction between the genetic factors of an 

individual and three groups of outside agents, including chemical carcinogens, such as 

asbestos, components of tobacco smoke, aflatoxin (a food contaminant), and arsenic (a drinking 

water contaminant), physical carcinogens, such as ultraviolet and ionizing radiation, and 

biological carcinogens, such as infections from certain viruses, bacteria, or parasites [10]. The 

most common cancers are lung (2.09 million cases), breast (2.09 million cases), prostate (1.28 

million cases), skin cancer (non-melanoma) (1.04 million cases) and stomach (1.03 million 

cases) [11].  

Medicinal plants have long been recognized for their potential therapeutic benefits and 

anticancer properties. Many plants contain bioactive compounds that can exert anticancer 

effects by various mechanisms, such as inducing apoptosis (programmed cell death), inhibiting 

cell proliferation, and reducing inflammation. Several plants have shown promise as potential 

anticancer agents [12]. For example, curcumin, the active compound in turmeric (Curcuma 

longa), has been extensively studied for its anticancer properties. It exhibits antioxidant, anti-

inflammatory, and anti-proliferative effects and has shown the potential to inhibit the growth 

of various cancer cells [13,14]. Green tea contains polyphenols, particularly epigallocatechin 

gallate (EGCG), which has been studied for its anticancer effects. Green tea polyphenols have 

been shown to inhibit tumor cell growth, induce cell death, and prevent angiogenesis 

(formation of new blood vessels to supply tumors) [15]. 

Dimocarpus longan, commonly known as longan, is a tropical fruit tree native to 

Southeast Asia. It belongs to the Sapindaceae family, including other fruit trees like lychee and 

rambutan. The longan fruit is highly valued for its sweet and aromatic flavor. It contains various 

antioxidants, such as flavonoids and phenolic compounds, which help protect the body against 

oxidative stress caused by free radicals. Antioxidants may help reduce the risk of chronic 

diseases and support overall health. It also contains vitamin C, which supports immune system 

function. Vitamin C acts as an antioxidant and plays a crucial role in producing white blood 

cells, which are essential for fighting off infections. It is often used in traditional Chinese 

medicine as a natural remedy for anxiety and to promote relaxation. It is believed to have a 

calming effect on the nervous system and may help reduce stress and promote better sleep. In 
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traditional Chinese medicine, it is considered a ‘blood tonic’. It is believed to nourish and 

strengthen the blood, potentially benefiting individuals with anemia or those recovering from 

illness. It is rich in dietary fiber, which promotes healthy digestion and can help prevent 

constipation. Fiber-rich foods like longan may support gut health and maintain regular bowel 

movements. It possesses anti-inflammatory properties. These properties could help reduce 

inflammation in the body and relieve inflammatory conditions [16-18]. 

Computer-aided drug design (CADD) is a field of computational biology that involves 

using computational tools and techniques to design and discover new drugs [19]. One of the 

approaches used in CADD is structure-based drug design, which involves identifying and 

optimizing small molecules that can bind to a target protein and modulate its function [20]. The 

process of structure-based drug design (SBDD) typically involves the following steps. The first 

step is to identify a target protein that plays a key role in a particular disease. This target protein 

could be an enzyme, receptor, or other molecule in disease progression. Once the target protein 

is identified, its three-dimensional structure must be determined. Experimental techniques such 

as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy can be used for 

this purpose. If the experimental structure is unavailable, homology modeling can be used to 

predict the protein structure based on its similarity to known structures. Virtual screening is 

used to identify potential drug candidates from large chemical libraries. This can be done using 

docking algorithms that predict the binding affinity of small molecules to the target protein. 

The docking algorithms generate a set of ligand poses and rank them based on their binding 

scores. After the virtual screening, the identified drug candidates, also known as leads, undergo 

a process of optimization. This involves modifying the chemical structure of the leads to 

improve their binding affinity, selectivity, and pharmacokinetic properties. Computational 

methods such as molecular dynamics simulations and quantitative structure-activity 

relationship (QSAR) analysis can be used to guide lead optimization. Absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) properties of lead compounds are crucial for 

their success as drugs. Computational tools can predict various ADMET properties, such as 

solubility, permeability, metabolic stability, and toxicity, which aid in selecting promising drug 

candidates. Finally, the selected drug candidates are synthesized and tested in vitro and in vivo 

to validate their activity and safety [21, 22]. The computational predictions are compared with 

experimental results to assess the accuracy and reliability of the computational methods used. 

The iterative process of designing, synthesizing, and testing compounds continues until a 

suitable drug candidate with desired properties is identified for further development and 

clinical trials. 

The study aims to verify whether the plant compounds are correctly classified into two 

groups (Yes=Suitable for drug designing, No= Not Suitable for Drug designing), which were 

screened using Lipinski’s Rule of Five, and finding suitable phytocompound that can act as a 

drug for cancer treatment. 

2. Materials and Methods 

2.1. Plant compounds. 

Phytocompounds were used as ligands that act as drugs for cancer treatment. They were 

identified through a literature review search. The literature review was carried out using 

electronic databases such as Google Scholar, Science Direct, Elsevier, etc. The bioactive 

compounds were retrieved based on their medicinal activities in humans. The retrieved thirty 
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plant compounds (neohesperidin, hesperetin 5-O-glucoside, nobiletin, diosmin, avicularin, 

nicotiflorin, isotrifoliin, biorobin, spiraeoside, Lepicatechin, piperidine, α-terpineol, lysopc 

18:1, o-phosphocholine, betaine, ellagic acid, procyanidin A2, L-glutamic acid, L-aspartic acid, 

citric acid, kaempferol, quercetin, flavogallonic acid, p-coumaric acid, corilagin, vanillic acid, 

gallic acid, isoscopoletin, tannin and 4-methylcatechol) in sdf format from the PubChem 

database [23]. 

2.2. Screening of plant compounds using Lipinski’s Rule. 

Lipinski’s Rule of Five, which outlines a set of standards that a ligand must meet to be 

appropriate for drug design, is used to screen the retrieved ligands. It provides standards for 

drug-like characteristics and concentrates on drug bioavailability [24-26]. The molecular 

weight (MW) must be equal to or less than 500 daltons (MW 500 daltons), the number of 

hydrogen bond donors must be equal to or less than five (HBD 5), the number of hydrogen 

bond acceptors must be equal to or less than ten (HBA 10), the number of rotatable bonds must 

be equal to or less than ten (RB 10), and the log P value must be equal or less than 5 (LogP ≤5) 

and polar surface area (PSA≤140Å2) for a ligand to pass the requirement to be the suitable 

drugs for cancer treatment [27-30]. 

2.3. Toxicity prediction. 

The prediction of toxicity was carried out using the Admet SAR 2.0 web-based server 

[31]. Human Etherà-go-go-Related Gene (hERG) toxicity, AMES toxicity, carcinogenicity 

(CGT),  hepatotoxicity, lethal dose LD50, plasma protein binding (PPB), respiratory toxicity, 

reproductive toxicity, mitochondrial toxicity, nephrotoxicity, and skin sensitization were 

among the metrics calculated by this descriptor [32, 33]. 

2.4. Naïve Bayes machine learning algorithm. 

Naïve Bayes Classifier is one of the simplest and most effective Classification 

algorithms that help build fast machine learning models that can make quick predictions. It is 

a probabilistic classifier, which means it predicts based on the probability of an object. They 

are fast and easy to implement, but their disadvantage is the requirement for predictors to be 

independent [34]. 

2.5. Principal component analysis (PCA). 

The principal component analysis aims to derive a small number of linear combinations 

(principal components) of a set of variables that retain as much information in the original 

variables as possible. Often, a few principal components can be used instead of the original 

variables for plotting, regression, clustering, and so on. This technique transformed the original 

set of variables into a new set of uncorrelated random variables. These new variables were 

linear combinations of the original variables and were derived in decreasing order of 

importance so that the first principal component accounts for as much of the variation in the 

original data as possible. 
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3. Results and Discussion 

3.1. Retrieval of natural compounds of Dimocarpus Longan. 

The bioactive compounds of Dimocarpus Longan obtained from the PubChem database 

are displayed in Table 1. They were saved in three-dimensional (3-D) format. 

Table 1. Plant compounds of Dimocarpus Longan retrieved from the PubChem database. 

No PubChem ID Bioactive Compound 3-D Structure 

1 442439 Neohesperidin 

 

2 18625123 Hesperetin 5-O-glucoside 

 

3 72344 Nobiletin 

 

4 5281613 Diosmin 

 

5 5490064 Avicularin 

 

6 5318767 Nicotiflorin 

 

7 5280804 Isotrifoliin 
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No PubChem ID Bioactive Compound 3-D Structure 

8 12313332 Biorobin 

 

9 5320844 Spiraeoside 

 

10 72276 L-Epicatechin 

 

11 8082 Piperidine 

 

12 442501 α-Terpineol 

 

13 53480465 LysoPC 18:1 

 

14 1014 O-Phosphocholine 

 

15 247 Betaine 

 

16 5281855 Ellagic acid 
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No PubChem ID Bioactive Compound 3-D Structure 

17 124025 Procyanidin A2 

 

18 33032 L-Glutamic acid 

 

19 5960 L-Aspartic acid 

 

20 311 Citric acid 

 

21 6325460 Kaempferol 

 

22 5280343 Quercetin 

 

23 14503023 Flavogallonic acid 

 

24 637542 p-Coumaric acid 

 

25 73568 Corilagin 
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No PubChem ID Bioactive Compound 3-D Structure 

26 277423 Vanillic acid 

 

27 370 Gallic acid 

 

28 69894 Isoscopoletin 

 

29 44144428 Tannin 

 

30 9958 4-Methylcatechol 

 

3.2. Screening of plant compounds using Lipinski’s Rule of Five. 

Selected phytocomponents (ligands) obtained from the PubChem database were 

screened using Lipinski’s Rule of 5. In drug discovery, Lipinski’s Rule of 5 can predict the 

ability and strength of absorption and permeation [35, 36]. According to the Rule of 5, poor 

absorption and permeation are more likely when there are more than 5 hydrogen bond donors 

(HBD ≤5), 10 hydrogen bond acceptors (HBA ≤10), the molecular weight is greater than 500 

(MW ≤500 daltons), and if the calculated Log P is greater than 5 (Log P ≤5).  

Out of the thirty ligands that were screened, seventeen ligands (nobiletin, Lepicatechin, 

piperidine, α-terpineol, O-phosphocholine, betaine, ellagic acid, L-glutamic acid, L-aspartic 

acid, and citric acid, kaempferol, quercetin, p-coumaric acid, vanillic acid, gallic acid, 

isoscopoletin, and 4-methylcatechol) pass the evaluation test (Table 2). These ligands show no 

violation of Lipinski’s Rule of 5 where these ligands have less than 5 hydrogen bond donors, 

less than 10 hydrogen bond acceptors, a molecular weight of less than 500, and calculated Log 

P is less than 5, which indicates that these compounds have good absorption and permeation 

which possess the chemical and physical properties to be orally active drugs and can proceed 

for Naïve Bayes Machine Learning algorithm and Principal Component Analysis. 
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3.3. Prediction toxicity of plant compounds. 

An in silico toxicity test was conducted using the admet SAR 2.0 web server to identify 

the harmful effects of the phytochemicals. Table 3 shows the human Etherà-go-go-Related 

Gene (hERG) toxicity, AMES toxicity, carcinogenicity (CGT), hepatotoxicity (HT), lethal 

dose LD50, and plasma protein binding (PPB), respiratory toxicity (RT), reproductive toxicity 

(RPT), mitochondrial toxicity (MT), nephrotoxicity (NT) and skin sensitization (SS) results. 

The results show that ellagic acid, nobiletin, kaempferol, quercetin, gallic acid, and 4-

methylcatechol had hepatotoxicity. Phloroglucinol, kaempferol, isobutyl isothiocyanate, 

taurine, and apigenin are a few examples of hepatotoxic flavonoid compounds. Numerous 

studies on these phyto-compounds’ medicinal effects have previously been published [37]. 

Furthermore, O-phosphocholine possesses properties of carcinogenicity. Nobiletin may cause 

cardiac side effects due to its hERG toxicity. 

Table 3. Toxicity test on selected natural compounds. 

Plant Compounds 
hERG 

Toxicity 

AMES 

Toxicity 
CGT HT SS RT RPT MT NT PPB 

RAT 

(LD50) 

Betaine NO NO NO NO NO YES NO YES YES 0.376 0.6371 

Citric Acid NO NO NO NO NO NO NO NO NO 0.220 0.8407 

Ellagic Acid NO NO NO YES NO YES YES YES NO 0.993 0.6020 

L-Aspartic Acid NO NO NO NO NO NO NO NO NO 0.194 0.5911 

L-Epicatechin NO YES NO NO NO YES YES YES NO 1.034 0.6433 

L-Glutamic Acid NO NO NO NO NO YES NO YES NO 0.104 0.6349 

Nobiletin YES NO NO YES NO NO YES NO NO 1.055 0.6245 

O-Phosphocholine NO NO YES NO NO YES NO YES YES 0.658 0.5117 

Piperidine NO NO NO NO NO NO NO YES YES 0.655 0.7407 

α-Terpineol NO NO NO NO YES NO NO NO NO 0.652 0.6381 

Kaempferol NO YES NO YES NO YES YES YES NO 1.094 0.6238 

Quercetin NO YES NO YES NO YES YES YES NO 1.164 0.7348 

p-Coumaric acid NO NO NO NO YES NO YES NO YES 0.509 0.4898 

Vanillic acid NO NO NO NO NO NO YES NO NO 0.584 0.4923 

Gallic acid NO NO NO YES YES NO YES YES NO 0.506 0.6904 

Isoscopoletin NO NO NO NO NO NO YES NO NO 0.779 0.8059 

4-Methylcatechol NO NO NO YES YES NO YES NO NO 0.626 0.5777 

3.4. Naïve Bayes machine learning algorithm analysis. 

Retrieved plant compounds are screened using Lipinski’s Rule of Five, which provides standardized criteria that 

a ligand should pass to be suitable for drug design. It establishes criteria for drug-like qualities and focuses on 

medication bioavailability. The Naïve Bayes Machine Learning algorithm was applied to the dataset to classify 

the plant compounds into two groups (Yes=Suitable for drug designing, No= Not Suitable for Drug designing), 

which are screened using Lipinski’s Rule of Five [38-40]. The Naïve Bayes applications allow all attributes to 

contribute to the final decision equally. This simplicity is equivalent to computational efficiency, which makes 

the Naïve Bayes technique attractive and suitable for various fields. Table 4 describes the detailed summary of 

the Naïve Bayes Classifier, and Table 5 provides the Confusion matrix. Using Cross-Validation with k-fold=10 

shows the best accuracy produced by the Naïve Bayes Classifier, which reaches 93.33 %. Table 6 shows the 

classification results consisting of the value of accuracy, error, precision, and recall from the Naïve Bayes 

Classifier. In this study, it was also concluded that the Naïve Bayes Classifier algorithm could classify the plant 

compounds suitable for drug design or not with the optimal value of accuracy. 

3.5. Principal component analysis (PCA). 

After classifying the plant compounds into two groups with optimal accuracy, the most influencing plant 

compounds were identified using principal component Analysis (PCA) techniques. A PCA was performed with 

all 30 plant compounds with all the variables, and the loadings plot and the component matrix were used to 

interpret the dataset. Principal component analysis (PCA) contributed 99.90% of the total variance. The loading 

plot (Figure 1) shows the relationship between the PCs and the original variables.  
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Table 2. List of pharmacokinetics properties, molecular weight (MW), hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), partitioning coefficient (LogP), number of 

rotatable bonds (RB), polar surface area (PSA), synthetic accessibility (SA), gastrointestinal (GI) absorption, and Lipinski’s Rule of 5 of all plant compounds. 

Bioactive 

Compound 
PubChem ID 

Molecular

Weight 

(≤500) 

Hydrogen 

bond donor 

(≤5) 

Hydrogen 

bond acceptor 

(≤10) 

LogP 

(≤5) 

Rotatable 

bond 

(≤10) 

Polar 

surfaces area 

(<140A2) 

Synthetic 

accessibility 
Log S 

Gastrointestinal 

absorption 

Lipinski 

Rule 

Neohesperidin 442439 610.6 8 15 2.57 7 234.29 
Moderate 

(6.36) 
-3.07 

(Soluble) 
Low NO 

Hesperetin 5-
O-glucoside 

18625123 464.4 6 11 1.88 5 175.37 
Moderate 

95.25) 
-2.81 

(Soluble) 
Low NO 

Nobiletin 72344 402.4 0 8 3 7 85.59 
Easy 
(3.90) 

-4.18 
(Moderate 

soluble) 

High YES 

Diosmin 5281613 608.5 8 15 3.05 7 238.20 
Moderate 

(6.48) 

-3.51 

(Soluble) 
Low NO 

Avicularin 5490064 434.3 7 11 1.86 4 190.28 
Moderate 

(5.04) 

-3.27 

(Soluble) 
Low NO 

Nicotiflorin 5318767 594.5 9 15 2.79 6 249.20 
Moderate 

(6.48) 

-3.42 

(Moderate 

soluble) 

Low NO 

Isotrifoliin 5280804 464.4 9 12 0.94 4 210.51 
Moderate 

(5.32) 

-3.04 

(Soluble) 
Low NO 

Biorobin 12313332 594.5 9 15 2.79 6 249.20 
Moderate 

(6.48) 

-3.42 

(Moderate 

soluble) 

Low NO 

Spiraeoside 5320844 464.4 8 12 1.45 4 210.51 
Moderate 

(5.23) 

-3.64 

(Soluble) 
Low NO 

L-Epicatechin 72276 290.27 5 6 1.47 1 110.38 
Easy 

(3.50) 

-2.22 

(Soluble) 
High YES 

Piperidine 8082 85.15 1 1 1.70 0 12.03 
Easy 

(1.00) 

-0.90 

(Soluble) 
Low YES 

α-Terpineol 442501 154.25 1 1 2.51 1 20.23 
Easy 

(3.24) 

-2.87 

(Soluble) 
High YES 

LysoPC 18:1 53480465 521.7 1 7 0.59 25 114.93 
Moderate 

(5.94) 

-5.07 

(Moderate 

soluble) 

Low NO 

O-
Phosphocholin

e 

1014 184.15 2 4 -2.54 4 76.57 
Easy 

(2.94) 

0.23 (Highly 
soluble) 

 

High YES 

Betaine 247 117.15 0 2 -2.19 2 40.13 
Easy 

(1.00) 

-0.35 (Very 

soluble) 
Low YES 

Ellagic Acid 5281855 302.19 4 8 0.79 0 141.34 
Easy 

(3.17) 

-2.94 

(Soluble) 
High YES 
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Bioactive 

Compound 
PubChem ID 

Molecular

Weight 

(≤500) 

Hydrogen 

bond donor 

(≤5) 

Hydrogen 

bond acceptor 

(≤10) 

LogP 

(≤5) 

Rotatable 

bond 

(≤10) 

Polar 

surfaces area 

(<140A2) 

Synthetic 

accessibility 
Log S 

Gastrointestinal 

absorption 

Lipinski 

Rule 

Procyanidin A2 124025 576.5 9 12 1.80 2 209.76 
Moderate 

(5.85) 

-5.21 

(Moderate 

soluble) 

Low NO 

L-Glutamic 

Acid 
33032 147.13 3 5 0.41 4 100.62 

Easy 

(1.81) 

1.84 (Highly 

soluble) 
High YES 

L-Aspartic 

Acid 
5960 133.1 3 5 -0.14 3 100.62 

Easy 

(1.80) 

1.98 (Highly 

soluble) 
High YES 

Citric Acid 311 192.12 4 7 -1.49 5 132.13 
Easy 

(2.18) 

0.38 (Highly 

soluble) 
Low YES 

Kaempferol 6325460 610.52 10 16 2.34 7 269.43 
Moderate 

(6.56) 

-3.31 

(Soluble) 
Low YES 

Quercetin 5280343 302.24 5 7 1.63 1 131.36 
3.23 

(Easy) 

-3.16 

(Soluble) 
High YES 

Flavogallonic 

acid 
14503023 470.30 8 13 0.58 2 239.33 

3.73 

(Easy) 

-3.85 

(Soluble) 
Low NO 

p-Coumaric 

acid 
637542 164.16 2 3 0.95 2 57.53 

1.61 

(Easy) 

-2.02 

(Soluble) 
High YES 

Corilagin 73568 634.45 11 18 2.03 3 310.66 
6.66 

(Moderate) 

-3.92 

(Soluble) 
Low No 

Vanillic acid 277423 168.15 2 4 1.40 2 667.76 
1.42 

(Easy) 

-2.02 

(Soluble) 
High Yes 

Gallic acid 370 170.12 4 5 0.21 1 97.99 
1.22 

(Easy) 

-1.64 

(Very soluble) 
High Yes 

Isoscopoletin 69894 192.17 1 4 1.95 1 59.67 
2.65 

(Easy) 

-2.36 

(soluble) 
High Yes 

Tannin 44144428 952.69 15 26 0.33 16 452.02 
6.46 

(Moderate) 

-1.97 (Very 

soluble) 
Low NO 

4-

Methylcatechol 
9958 124.14 2 2 1.39 0 40.46 

1.00 

(Easy) 

-1.97 (Very 

soluble) 
High Yes 
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Table 4. Summary of Naïve Bayes classifier. 

 Frequency Percentage 

Correctly Classified Instances 28 93.3333 % 

Incorrectly Classified Instances 2 6.6667 % 

Kappa statistic 0.8667  

Mean absolute error 0.0737  

Root mean squared error 0.2609  

Relative absolute error 14.8463 %  

Root relative squared error 52.1132 %  

Table 5. Accuracy parameter by class. 

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 

1.000 0.118 0.867 1.00 0.929 0.874 0.887 0.720 No 

0.882 0.000 1.000 0.882 0.938 0.874 0.891 0.950 Yes 

*TP: True position; FP: False position; MCC: Matthews Correlation Coefficient; ROC: Receiver Operating 

Characteristic; PRC: Precision-Recall Curve. 

Table 6. Confusion Matrix a  b<-- classified as YES or NO. 

a b 
Classification 

criteria 

13 0 a = NO 

2 15 b = YES 

 

 

Figure 1. Principal component analysis (PCA) bi-plot for the 30 plant compounds. 

The first two PCs account for 75.70% and 24.19%, variance respectively, of the total 

variation in the dataset, so the two-dimensional (2-D) loading plot of the data set given by 

Figure 1 is a very good approximation to the original scatter-plot in two-dimensional space. 

The first principal component is strongly correlated with the original variables. The first 

principal component increases with increasing tannin, corilagin, avicularin, and biorobin and 

decreasing betaine, l-aspartic acid, and ellagic acid. The second PCA increases with the 

increased value of 4-methylcatechol. 
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4. Conclusions 

 The results of the testing analysis showed naïve Bayes had a stable accuracy after being 

tested with an accuracy value of 93.33%. It helps to classify the plant compounds suitable for 

drug design or not precisely. The principal Component Analysis method identifies the most 

influencing plant compounds. According to this study, α-terpineol (PubChem ID: 442501) may 

be the safest and most efficient drug for treating cancer. This in silico analysis of the anticancer 

properties of α-terpineol will contribute to developing a novel and potent drug for cancer 

treatment. 
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